CHARACTERIZATIONS OF LIE DERIVATIONS OF GENERALIZED MATRIX ALGEBRAS

JIANBIN GUO

Department of Mathematics East China University of Science and Technology Shanghai 200237 P. R. China e-mail: guojianbin19840410@yahoo.com

Abstract

We say that L is a Lie derivable mapping at G from an algebra \mathcal{A} into itself, if L([A, B]) = [L(A), B] + [A, L(B)] for any $A, B \in \mathcal{A}$ with AB = G. Let $\mathcal{U} = \begin{bmatrix} \mathcal{A} & \mathcal{M} \\ \mathcal{N} & \mathcal{B} \end{bmatrix}$ be a generalized matrix algebra. In this paper, we prove that if L is a Lie derivable mapping at 0 (resp., $I_{\mathcal{A}} \oplus 0$) from \mathcal{U} into itself, then L can be expressed as the sum of a derivation of \mathcal{U} and a linear mapping with image in the center vanishing at commutators [S, T], where $S, T \in \mathcal{U}$ with ST = 0 (resp., $ST = I_{\mathcal{A}} \oplus 0$).

1. Introduction

Let \mathcal{R} be a unital ring and \mathcal{A} be a unital \mathcal{R} -algebra. A linear mapping δ from \mathcal{A} into itself is called a *derivation*, if $\delta(xy) = \delta(x)y + x\delta(y)$ for any $x, y \in \mathcal{A}$. A linear mapping L from \mathcal{A} into itself is called a *Lie derivation*, if L([x, y]) = [L(x), y] + [x, L(y)] for any $x, y \in \mathcal{A}$, where

© 2011 Scientific Advances Publishers

²⁰¹⁰ Mathematics Subject Classification: 16W25, 47B47, 47L35.

Keywords and phrases: derivation, generalized matrix algebra, Lie derivation. Received March 30, 2011

[x, y] = xy - yx is the usual Lie product. The questions of characterizing Lie derivations and revealing the relationship between Lie derivations and derivations have attracted some authors' attention. In [9], Mathieu and Villena proved that every linear Lie derivation on a C^* -algebra can be decomposed into the sum of a derivation and a center-valued trace. For other results, see [1, 3, 4, 6, 7, 10] and the references therein.

Recently, there have been a number of papers on the study of conditions under which derivations on algebras can be completely determined by their action on some subsets of elements (for example, see [2, 5, 12] and the references therein). We say that L is a *Lie derivable mapping* at G from \mathcal{A} into itself, if L([A, B]) = [L(A), B] + [A, L(B)] for any $A, B \in \mathcal{A}$ with AB = G. In [8], Lu and Jing first studied the local actions of Lie derivations and showed that if L is a Lie derivable mapping at 0 (resp., a fixed nontrivial idempotent P) from B(X) into itself, then L can be expressed as the sum of a derivation of B(X) and a linear mapping with image in the center vanishing at commutators [A, B], where $A, B \in B(X)$ with AB = 0 (resp., AB = P).

Let \mathcal{R} be a unital ring. A *Morita context* is a set $(\mathcal{A}, \mathcal{B}, \mathcal{M}, \mathcal{N})$ and two mappings ϕ and ϕ , where \mathcal{A} and \mathcal{B} are two \mathcal{R} -algebras, \mathcal{M} is an $(\mathcal{A}, \mathcal{B})$ -bimodule, and \mathcal{N} is a $(\mathcal{B}, \mathcal{A})$ -bimodule. The mappings $\phi : \mathcal{M} \otimes_{\mathcal{B}}$ $\mathcal{N} \to \mathcal{A}$ and $\phi : \mathcal{N} \otimes_{\mathcal{A}} \mathcal{M} \to \mathcal{B}$ are two bimodule homomorphisms satisfying the following associativity: $\phi(M \otimes N)M' = M\phi(N \otimes M')$ and $\phi(N \otimes M)N' = N\phi(M \otimes N')$, for all $M, M' \in \mathcal{M}$ and $N, N' \in \mathcal{N}$. These conditions insure that the set

$$\begin{bmatrix} \mathcal{A} & \mathcal{M} \\ \mathcal{N} & \mathcal{B} \end{bmatrix} = \left\{ \begin{bmatrix} A & M \\ N & B \end{bmatrix} | A \in \mathcal{A}, M \in \mathcal{M}, N \in \mathcal{N}, B \in \mathcal{B} \right\},\$$

form an \mathcal{R} -algebra under usual matrix operations. We call such an \mathcal{R} -algebra a generalized matrix algebra and denoted by $\mathcal{U} = \begin{bmatrix} \mathcal{A} & \mathcal{M} \\ \mathcal{N} & \mathcal{B} \end{bmatrix}$,

where \mathcal{A} and \mathcal{B} are two unital algebras and at least one of the two bimodules \mathcal{M} and \mathcal{N} is distinct from zero. This kind of algebra was first introduced by Sands in [11]. Obviously, when $\mathcal{M} = 0$ or $\mathcal{N} = 0$, \mathcal{U} degenerates to the triangular algebra. We denote $I_{\mathcal{A}}$ the unit element in

 $\mathcal{A}, I_{\mathcal{B}}$ the unit element in \mathcal{B} , and $A \oplus B$ the element $\begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}$ in \mathcal{U} .

The purpose of this paper is to consider the local actions of Lie derivations of generalized matrix algebras. We prove that if L is a Lie derivable mapping at 0 (resp., $I_{\mathcal{A}} \oplus 0$) from \mathcal{U} into itself, then L can be expressed as the sum of a derivation of \mathcal{U} and a linear mapping with image in the center vanishing at commutators [S, T], where $S, T \in \mathcal{U}$ with ST = 0 (resp., $ST = I_{\mathcal{A}} \oplus 0$).

In this paper, the center of an algebra \mathcal{A} is denoted by $Z(\mathcal{A})$. Given a generalized matrix algebra $\mathcal{U} = \begin{bmatrix} A & M \\ N & B \end{bmatrix}$, we define two natural projections $\pi_{\mathcal{A}} : \mathcal{U} \to \mathcal{A}$ and $\pi_{\mathcal{B}} : \mathcal{U} \to \mathcal{B}$ by

$$\pi_{\mathcal{A}}\left(\begin{bmatrix}A&&M\\N&&B\end{bmatrix}\right)=A \text{ and } \pi_{\mathcal{B}}\left(\begin{bmatrix}A&&M\\N&&B\end{bmatrix}\right)=B.$$

Given an integer $n \ge 2$, we say that the *characteristic* of an algebra \mathcal{A} is not n, if for every $A \in \mathcal{A}$, nA = 0 implies A = 0. In this paper, we always assume that the characteristic of \mathcal{U} is not 2.

2. Lie Derivable Mapping at Zero-Product Elements

We call a left (resp., right) \mathcal{A} -module \mathcal{M} is *faithful*, if for any $A \in \mathcal{A}$ and $M \in \mathcal{M}$, AM = 0 (resp., MA = 0) implies A = 0. In this section, we study the Lie derivable mapping at zero-product elements. Our main result is the following: **Theorem 2.1.** Let $\mathcal{U} = \begin{bmatrix} \mathcal{A} & \mathcal{M} \\ \mathcal{N} & \mathcal{B} \end{bmatrix}$ be a generalized matrix algebra and L be a Lie derivable mapping at 0 from \mathcal{U} into itself. Suppose that $Z(\mathcal{A}) = \pi_{\mathcal{A}}(Z(\mathcal{U})), Z(\mathcal{B}) = \pi_{\mathcal{B}}(Z(\mathcal{U})),$ and one of the following conditions holds:

(1) *M* is a faithful left A-module and a faithful right B-module;

(2) *M* is a faithful left A-module and *N* is a faithful left B-module;

(3) N is a faithful right A -module and M is a faithful right B -module;

(4) N is a faithful right A-module and a faithful left B-module.

Then L can be expressed as $\delta + h$, where δ is a derivation on \mathcal{U} , and $h : \mathcal{U} \to Z(\mathcal{U})$ is a linear mapping, vanishing at commutators [S, T], where $S, T \in \mathcal{U}$ with ST = 0.

Since L is linear, for any $A \in \mathcal{A}, M \in \mathcal{M}, N \in \mathcal{N}$, and $B \in \mathcal{B}$, we may write

$$\begin{split} & L \begin{pmatrix} A & M \\ N & B \end{pmatrix} \\ & = \begin{bmatrix} a_{11}(A) + b_{11}(B) + c_{11}(M) + d_{11}(N) & a_{12}(A) + b_{12}(B) + c_{12}(M) + d_{12}(N) \\ & a_{21}(A) + b_{21}(B) + c_{21}(M) + d_{21}(N) & a_{22}(A) + b_{22}(B) + c_{22}(M) + d_{22}(N) \end{bmatrix} \end{split}$$

where a_{ij} , b_{ij} , c_{ij} , and d_{ij} are linear mappings, $i, j \in \{1, 2\}$.

To prove Theorem 2.1, we first show a lemma and two propositions.

Lemma 2.2. Let $\mathcal{U} = \begin{bmatrix} \mathcal{A} & \mathcal{M} \\ \mathcal{N} & \mathcal{B} \end{bmatrix}$ be a generalized matrix algebra

and L be a Lie derivable mapping at 0 from U into itself. Then

$$\begin{split} & L \! \left(\begin{bmatrix} A & M \\ N & B \end{bmatrix} \right) \\ & = \begin{bmatrix} a_{11}(A) - MN_0 - M_0N + b_{11}(B) & AM_0 + c_{12}(M) - M_0B \\ N_0A + d_{21}(N) - BN_0 & a_{22}(A) + N_0M + NM_0 + b_{22}(B) \end{bmatrix}, \end{split}$$

25

where $M_0 \in M$, $N_0 \in N$, and $a_{11} : \mathcal{A} \to \mathcal{A}, b_{22} : \mathcal{B} \to \mathcal{B}, a_{22} : \mathcal{A} \to Z(\mathcal{B}),$ $b_{11} : \mathcal{B} \to Z(\mathcal{A})$ are all linear mappings satisfying

$$\begin{aligned} c_{12}(AM) &= Ac_{12}(M) + a_{11}(A)M - Ma_{22}(A), \\ c_{12}(MB) &= c_{12}(M)B + Mb_{22}(B) - b_{11}(B)M, \\ d_{21}(NA) &= d_{21}(N)A + Na_{11}(A) - a_{22}(A)N, \\ d_{21}(BN) &= Bd_{21}(N) + b_{22}(B)N - Nb_{11}(B), \\ a_{11}(MN) &= c_{12}(M)N + Md_{21}(N) + b_{11}(NM), \\ b_{22}(NM) &= Nc_{12}(M) + d_{21}(N)M + a_{22}(MN). \end{aligned}$$

Proof. We prove the lemma by two steps:

Step 1. For any $A \in A$, M_1 , $M_2 \in M$, $B \in B$, let $S = \begin{bmatrix} A & M_1 \\ 0 & 0 \end{bmatrix}$ and $T = \begin{bmatrix} 0 & M_2 \\ 0 & B \end{bmatrix}$. Then TS = 0 and $\begin{bmatrix} c_{11}(AM_2 + M_1B) & c_{12}(AM_2 + M_1B) \\ c_{21}(AM_2 + M_1B) & c_{22}(AM_2 + M_1B) \end{bmatrix}$ = L([S, T]) = [L(S), T] + [S, L(T)] $= \begin{bmatrix} a_{11}(A) + c_{11}(M_1) & a_{12}(A) + c_{12}(M_1) \\ a_{21}(A) + c_{21}(M_1) & a_{22}(A) + c_{22}(M_1) \end{bmatrix} \begin{bmatrix} 0 & M_2 \\ 0 & B \end{bmatrix}$ $- \begin{bmatrix} 0 & M_2 \\ 0 & B \end{bmatrix} \begin{bmatrix} a_{11}(A) + c_{11}(M_1) & a_{12}(A) + c_{12}(M_1) \\ a_{21}(A) + c_{21}(M_1) & a_{22}(A) + c_{22}(M_1) \end{bmatrix}$ $+ \begin{bmatrix} A & M_1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} c_{11}(M_2) + b_{11}(B) & c_{12}(M_2) + b_{12}(B) \\ c_{21}(M_2) + b_{21}(B) & c_{22}(M_2) + b_{22}(B) \end{bmatrix} \begin{bmatrix} A & M_1 \\ 0 & 0 \end{bmatrix}.$

The above matrix equation implies the following four equations:

$$c_{11}(AM_2 + M_1B) = Ac_{11}(M_2) + Ab_{11}(B) + M_1c_{21}(M_2) + M_1b_{21}(B)$$
$$-M_2a_{21}(A) - M_2c_{21}(M_1) - c_{11}(M_2)A - b_{11}(B)A,$$
(2.1)

$$c_{12}(AM_{2} + M_{1}B) = a_{11}(A)M_{2} + c_{11}(M_{1})M_{2} + a_{12}(A)B + c_{12}(M_{1})B$$
$$+ Ac_{12}(M_{2}) + Ab_{12}(B) + M_{1}c_{22}(M_{2}) + M_{1}b_{22}(B)$$
$$- M_{2}a_{22}(A) - M_{2}c_{22}(M_{1}) - c_{11}(M_{2})M_{1} - b_{11}(B)M_{1},$$
$$(2.2)$$

$$c_{21}(AM_{2} + M_{1}B) = -Ba_{21}(A) - Bc_{21}(M_{1}) - c_{21}(M_{2})A - b_{21}(B)A, \quad (2.3)$$

$$c_{22}(AM_{2} + M_{1}B) = a_{21}(A)M_{2} + c_{21}(M_{1})M_{2} + a_{22}(A)B + c_{22}(M_{1})B$$

$$-Ba_{22}(A) - Bc_{22}(M_{1}) - c_{21}(M_{2})M_{1} - b_{21}(B)M_{1}.$$

$$(2.4)$$

(2.4)

Taking $M_1 = M_2 = 0$ in (2.1)-(2.4), we have

$$[A, b_{11}(B)] = 0, \ [a_{22}(A), B] = 0, \tag{2.5}$$

$$a_{12}(A)B = -Ab_{12}(B), (2.6)$$

$$Ba_{21}(A) = -b_{21}(B)A, (2.7)$$

for every $A \in \mathcal{A}$ and every $B \in \mathcal{B}$. By (2.5), we have

$$b_{11}(B) \in Z(\mathcal{A}) \text{ and } a_{22}(A) \in Z(\mathcal{B}),$$

$$(2.8)$$

for every $A \in \mathcal{A}$ and every $B \in \mathcal{B}$. Taking $A = I_{\mathcal{A}}$ and $B = I_{\mathcal{B}}$ in (2.6), we have $a_{12}(I_{\mathcal{A}}) = -b_{12}(I_{\mathcal{B}})$. Let $M_0 = a_{12}(I_{\mathcal{A}})$. Then taking $A = I_{\mathcal{A}}$ and $B = I_{\mathcal{B}}$ in (2.6), respectively, we obtain

$$a_{12}(A) = AM_0$$
 and $b_{12}(B) = -M_0B$, (2.9)

for every $A \in \mathcal{A}$ and every $B \in \mathcal{B}$. Similarly, let $a_{21}(I_{\mathcal{A}}) = N_0$, by (2.7), we obtain

$$a_{21}(A) = N_0 A$$
 and $b_{21}(B) = -BN_0$, (2.10)

27

for every $A \in \mathcal{A}$ and every $B \in \mathcal{B}$.

Taking B = 0 and $M_1 = 0$ in (2.2)-(2.4), we have

$$c_{12}(AM) = Ac_{12}(M) + a_{11}(A)M - Ma_{22}(A), \qquad (2.11)$$

$$c_{21}(AM) = -c_{21}(M)A, (2.12)$$

$$c_{22}(AM) = a_{21}(A)M, (2.13)$$

for every $A \in \mathcal{A}$ and every $M \in \mathcal{M}$. Since $\operatorname{char}(\mathcal{U}) \neq 2$, by taking $A = I_{\mathcal{A}}$ in (2.12) and (2.13), we obtain

$$c_{21}(M) = 0$$
 and $c_{22}(M) = N_0 M$, (2.14)

for every $M \in \mathcal{M}$. Similarly, by (2.1) and (2.2), we obtain

$$c_{12}(MB) = c_{12}(M)B + Mb_{22}(B) - b_{11}(B)M, \qquad (2.15)$$

$$c_{11}(M) = -MN_0, (2.16)$$

for every $B \in \mathcal{B}$ and every $M \in \mathcal{M}$.

Symmetrically, by considering $S = \begin{bmatrix} 0 & 0 \\ N_1 & B \end{bmatrix}$ and $T = \begin{bmatrix} A & 0 \\ N2 & 0 \end{bmatrix}$, we

arrive at

$$d_{11}(N) = -M_0 N, \quad d_{12}(N) = 0, \quad d_{22}(N) = NM_0,$$
 (2.17)

$$d_{21}(NA) = d_{21}(N)A + Na_{11}(A) - a_{22}(A)N, \qquad (2.18)$$

$$d_{21}(BN) = Bd_{21}(N) + b_{22}(B)N - Nb_{11}(B), \qquad (2.19)$$

for every $A \in \mathcal{A}$, every $B \in \mathcal{B}$, and every $N \in \mathcal{N}$.

Step 2. For any
$$M \in \mathcal{M}$$
 and $N \in \mathcal{N}$, let $S = \begin{bmatrix} MN & -M \\ 0 & 0 \end{bmatrix}$ and
 $T = \begin{bmatrix} I_{\mathcal{A}} & 0 \\ N & 0 \end{bmatrix}$. Then $ST = 0$ and
 $-\begin{bmatrix} a_{11}(MN) + MN_0 - M_0NMN - b_{11}(NM) & MNM_0 - c_{12}(M) + M_0NM \\ N_0MN + d_{21}(NMN) + NMN_0 & a_{22}(MN) - N_0M + NMNM_0 - b_{22}(NM) \end{bmatrix}$
 $= L([S, T]) = [L(S), T] + [S, L(T)]$
 $= \begin{bmatrix} a_{11}(MN) + MN_0 & MNM_0 - c_{12}(M) \\ N_0MN & a_{22}(MN) - N_0M \end{bmatrix} \begin{bmatrix} I_{\mathcal{A}} & 0 \\ N & 0 \end{bmatrix}$
 $-\begin{bmatrix} I_{\mathcal{A}} & 0 \\ N & 0 \end{bmatrix} \begin{bmatrix} a_{11}(MN) + MN_0 & MNM_0 - c_{12}(M) \\ N_0MN & a_{22}(MN) - N_0M \end{bmatrix}$
 $+\begin{bmatrix} MN & -M \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a_{11}(I_{\mathcal{A}}) - M_0N & M_0 \\ N_0 + d_{21}(N) & a_{22}(I_{\mathcal{A}}) + NM_0 \end{bmatrix} \begin{bmatrix} MN & -M \\ 0 & 0 \end{bmatrix}$.

The above matrix equation implies

$$a_{11}(MN) = c_{12}(M)N + Md_{21}(N) + b_{11}(NM) + a_{11}(I_{\mathcal{A}})MN - MNa_{11}(I_{\mathcal{A}}), \qquad (2.20)$$

$$b_{22}(NM) = Nc_{12}(M) + d_{21}(N)M + a_{22}(MN).$$
(2.21)

By (2.11) and (2.18), $c_{12}(AM) = Ac_{12}(M) + a_{11}(A)M - Ma_{22}(A)$ and $d_{21}(NA) = d_{21}(N)A + Na_{11}(A) - a_{22}(A)N$. Taking $A = I_A$ leads to $a_{11}(I_A)M = Ma_{22}(I_A)$ and $Na_{11}(I_A) = a_{22}(I_A)N$. So $MNa_{11}(I_A) = Ma_{22}(I_A)N = a_{11}(I_A)MN$ and hence (2.20) can be abbreviated to

$$a_{11}(MN) = c_{12}(M)N + Md_{21}(N) + b_{11}(NM).$$
(2.22)

By (2.8)-(2.11), (2.14)-(2.19), (2.21), and (2.22), the proof is complete.

The center $Z(\mathcal{U})$ of $\mathcal{U} = \begin{bmatrix} \mathcal{A} & \mathcal{M} \\ \mathcal{N} & \mathcal{B} \end{bmatrix}$ is of the form given in the proposition below, and since the proof is analogous to that of [3, Proposition 3], we omit it.

Proposition 2.3. The center of
$$\mathcal{U} = \begin{bmatrix} \mathcal{A} & \mathcal{M} \\ \mathcal{N} & \mathcal{B} \end{bmatrix}$$
 is
 $Z(\mathcal{U}) = \{A \oplus B : A \in Z(\mathcal{A}), B \in Z(\mathcal{B}), AM = MB,$
 $NA = BN, \forall M \in \mathcal{M}, \forall N \in \mathcal{N}\}.$

Furthermore, if one of the following conditions holds:

(1) *M* is a faithful left A-module and a faithful right B-module;

(2) *M* is a faithful left \mathcal{A} -module and *N* is a faithful left \mathcal{B} -module;

(3) M is a faithful right \mathcal{B} -module and N is a faithful right \mathcal{A} -module;

(4) N is a faithful left \mathcal{B} -module and a faithful right \mathcal{A} -module.

Then there exists a unique isomorphism τ from $\pi_{\mathcal{B}}(Z(\mathcal{U}))$ to $\pi_{\mathcal{A}}(Z(\mathcal{U}))$ such that $\tau(B)M = MB$ and $N\tau(B) = BN$ for any $B \in \mathcal{B}$, $M \in \mathcal{M}$, and $N \in \mathcal{N}$.

The proof of the proposition below concerning the structure of derivations on \mathcal{U} is standard and we omit it.

Proposition 2.4. A linear mapping δ on $\mathcal{U} = \begin{bmatrix} \mathcal{A} & \mathcal{M} \\ \mathcal{N} & \mathcal{B} \end{bmatrix}$ is a

derivation, if and only if it is of the form

$$\delta \begin{pmatrix} \begin{bmatrix} A & & M \\ N & & B \end{bmatrix} \end{pmatrix} = \begin{bmatrix} a_{11}(A) - MN_0 - M_0N & & AM_0 - M_0B + c_{12}(M) \\ N_0A - BN_0 + d_{21}(N) & & b_{22}(B) + N_0M + NM_0 \end{bmatrix},$$

where $N_0 \in \mathcal{N}, M_0 \in \mathcal{M}, and a_{11} : \mathcal{A} \to \mathcal{A}, b_{22} : \mathcal{B} \to \mathcal{B}, c_{12} : \mathcal{M} \to \mathcal{M},$ $d_{21} : \mathcal{N} \to \mathcal{N}$ are linear mappings satisfying (1) a_{11} is a derivation on A, $c_{12}(AM) = a_{11}(A)M + Ac_{12}(M)$ and $d_{21}(NA) = Na_{11}(A) + d_{21}(N)A$;

(2) b_{22} is a derivation on \mathcal{B} , $c_{12}(MB) = Mb_{22}(B) + c_{12}(M)B$ and $d_{21}(BN) = b_{22}(B)N + Bd_{21}(N);$

(3)
$$a_{11}(MN) = c_{12}(M)N + Md_{21}(N)$$
 and $b_{22}(NM) = d_{21}(N)M + Md_{21}(N)M$

 $Nc_{12}(M).$

Now, we are in a position to prove our main theorem.

Proof of Theorem 2.1. From Lemma 2.2, it follows that for any $A \in \mathcal{A}, M \in \mathcal{M}, N \in \mathcal{N}$, and $B \in \mathcal{B}$:

$$\begin{split} & L \bigg(\begin{bmatrix} A & M \\ N & B \end{bmatrix} \bigg) \\ & = \begin{bmatrix} a_{11}(A) - MN_0 - M_0N + b_{11}(B) & AM_0 + c_{12}(M) - M_0B \\ N_0A + d_{21}(N) - BN_0 & a_{22}(A) + N_0M + NM_0 + b_{22}(B) \end{bmatrix}, \end{split}$$

where $M_0 \in M$ and $N_0 \in N$.

We assume that (1) holds. The proofs for the other cases are analogous.

By Lemma 2.2, $a_{22}(A) \in Z(\mathcal{B}) = \pi_{\mathcal{B}}(Z(\mathcal{U}))$, since M is both a faithful left \mathcal{A} -module and a faithful right \mathcal{B} -module, by Proposition 2.3, there exists a unique isomorphism $\tau : \pi_{\mathcal{B}}(Z(\mathcal{U})) \to \pi_{\mathcal{A}}(Z(\mathcal{U}))$ such that

$$\tau(a_{22}(A))M = Ma_{22}(A)$$
 and $N\tau(a_{22}(A)) = a_{22}(A)N$.

Similarly, since $b_{11}(B) \in Z(\mathcal{A}) = \pi_{\mathcal{A}}(Z(\mathcal{U}))$, we have

$$\tau^{-1}(b_{11}(B))N = Nb_{11}(B)$$
 and $b_{11}(B)M = M\tau^{-1}(b_{11}(B)).$

Let $l_{\mathcal{A}} = \tau \circ a_{22}$ and $l_{\mathcal{B}} = \tau^{-1} \circ b_{11}$. We have $l_{\mathcal{A}}(A)M = Ma_{22}(A)$, $Nl_{\mathcal{A}}(A) = a_{22}(A)N$, $l_{\mathcal{B}}(B)N = Nb_{11}(B)$, and $b_{11}(B)M = Ml_{\mathcal{B}}(B)$. Let $a'_{11} = a_{11} - l_{\mathcal{A}}$ and $b'_{22} = b_{22} - l_{\mathcal{B}}$. Then CHARACTERIZATIONS OF LIE DERIVATIONS ...

$$\begin{split} L & \left(\begin{bmatrix} A & & M \\ N & & B \end{bmatrix} \right) = \begin{bmatrix} a_{11}'(A) - MN_0 - M_0N & AM_0 + c_{12}(M) - M_0B \\ N_0A + d_{21}(N) - BN_0 & N_0M + NM_0 + b_{22}'(B) \end{bmatrix}, \\ & + \begin{bmatrix} l_A(A) + b_{11}(B) & 0 \\ 0 & a_{22}(A) + l_B(B) \end{bmatrix}. \end{split}$$

Let

$$\delta \begin{pmatrix} \begin{bmatrix} A & & M \\ N & & B \end{bmatrix} \end{pmatrix} = \begin{bmatrix} a'_{11}(A) - MN_0 - M_0N & & AM_0 + c_{12}(M) - M_0B \\ N_0A + d_{21}(N) - BN_0 & & N_0M + NM_0 + b'_{22}(B) \end{bmatrix},$$

and

$$h\begin{pmatrix} \begin{bmatrix} A & & M \\ N & & B \end{bmatrix} = \begin{bmatrix} l_{\mathcal{A}}(A) + b_{11}(B) & & 0 \\ 0 & & a_{22}(A) + l_{\mathcal{B}}(B) \end{bmatrix}.$$

We claim that δ is a derivation on \mathcal{U} and $h: \mathcal{U} \to Z(\mathcal{U})$ is a linear map, vanishing at commutators [S, T] with ST = 0.

Claim 1. By Lemma 2.1, for any $A \in \mathcal{A}$ and $M \in \mathcal{M}$,

$$c_{12}(AM) = Ac_{12}(M) + a_{11}(A)M - Ma_{22}(A)$$

= $Ac_{12}(M) + a_{11}(A)M - l_{\mathcal{A}}(A)M$
= $Ac_{12}(M) + a'_{11}(A)M$,
 $d_{21}(NA) = d_{21}(N)A + Na_{11}(A) - a_{22}(A)N$
= $d_{21}(N)A + Na_{11}(A) - Nl_{\mathcal{A}}(A)$
= $d_{21}(N)A + Na'_{11}(A)$.

So for any $A_1,\,A_2\,\in\,\mathcal{A}\,$ and $\,M\,\in\,\mathcal{M},\,$

$$\begin{aligned} c_{12}(A_1A_2M) &= A_1A_2c_{12}(M) + a_{11}'(A_1A_2)M, \\ c_{12}(A_1A_2M) &= a_{11}'(A_1)A_2M + A_1c_{12}(A_2M) \\ &= a_{11}'(A_1)A_2M + A_1A_2c_{12}(M) + A_1a_{11}'(A_2)M. \end{aligned}$$

So $(a'_{11}(A_1A_2) - a'_{11}(A_1)A_2 - A_1a'_{11}(A_2))M = 0$. Since \mathcal{M} is a faithful left \mathcal{A} -module, we have a'_{11} is a derivation. Similarly, one can show that $c_{12}(MB) = c_{12}(M)B + Mb'_{22}(B), d_{21}(BN) = b'_{22}(B)N + Bd_{21}(N)$, and b'_{22} is a derivation.

Since $MN \in \mathcal{A}$ and $NM \in \mathcal{B}$, we have

$$c_{12}(MNM) = MNc_{12}(M) + a_{11}(MN)M - Ma_{22}(MN)$$

= $MNc_{12}(M) + c_{12}(M)NM + Md_{21}(N)M$
+ $b_{11}(NM)M - Ma_{22}(MN),$
 $c_{12}(MNM) = c_{12}(M)NM + Mb_{22}(NM) - b_{11}(NM)M$
= $c_{12}(M)NM + MNc_{12}(M) + Md_{21}(N)M$
+ $Ma_{22}(MN) - b_{11}(NM)M.$

So $Ma_{22}(MN) = b_{11}(NM)M$. On the other hand, $Ma_{22}(MN) = l_{\mathcal{A}}$ (MN)M. Hence $b_{11}(NM) = l_{\mathcal{A}}(MN)$ and $a'_{11}(MN) = c_{12}(M)N + Md_{21}$ (N). Similarly, one can show that $b'_{22}(NM) = Nc_{12}(M) + d_{21}(N)M$. By Proposition 2.4, δ is a derivation.

Claim 2. It is easy to show that h is a linear mapping with its image in $Z(\mathcal{U})$. Then for $S, T \in \mathcal{U}$ with ST = 0, we have

$$\delta([S, T]) + h([S, T]) = L([S, T]) = [L(S), T] + [S, L(T)]$$
$$= [\delta(S), T] + [S, \delta(T)] + [h(S), T] + [S, h(T)]$$
$$= [\delta(S), T] + [S, \delta(T)].$$

Hence h([S, T]) = 0. This concludes the proof.

Obviously, when N = 0, \mathcal{U} degenerates to an upper triangular algebra. Thus, we have the following corollary:

Corollary 2.5. Let $\mathcal{U} = Tri(\mathcal{A}, \mathcal{M}, \mathcal{B})$ be a triangular algebra, where \mathcal{M} be a faithful left \mathcal{A} -module and a faithful right \mathcal{B} -module. If L is a Lie derivable mapping at 0 from \mathcal{U} into itself and $Z(\mathcal{A}) = \pi_{\mathcal{A}}(Z(\mathcal{U}))$, $Z(\mathcal{B}) = \pi_{\mathcal{B}}(Z(\mathcal{U}))$, then L can be expressed as $\delta + h$, where δ is a derivation on \mathcal{U} and $h: \mathcal{U} \to Z(\mathcal{U})$ is a linear mapping, vanishing at commutators [S, T] with ST = 0.

3. Lie Derivable Mapping at $I_{\mathcal{A}} \oplus 0$ -Product Elements

In this section, we study the Lie derivable mapping at $I_{\mathcal{A}} \oplus 0$ -product elements.

Theorem 3.1. Let $\mathcal{U} = \begin{bmatrix} \mathcal{A} & \mathcal{M} \\ \mathcal{N} & \mathcal{B} \end{bmatrix}$ be a generalized matrix algebra. Suppose that for every $A \in \mathcal{A}$, there exists an integer n such that $nI_{\mathcal{A}} - A$ is invertible in \mathcal{A} . If L is a Lie derivable mapping at $I_{\mathcal{A}} \oplus 0$ from \mathcal{U} into itself, $Z(\mathcal{A}) = \pi_{\mathcal{A}}(Z(\mathcal{U})), Z(\mathcal{B}) = \pi_{\mathcal{B}}(Z(\mathcal{U}))$, and one of the following conditions holds:

(1) *M* is a faithful left A-module and a faithful right B-module;

(2) *M* is a faithful left A-module and *N* is a faithful left B-module;

(3) M is a faithful right \mathcal{B} -module and N is a faithful right \mathcal{A} -module;

(4) N is a faithful left \mathcal{B} -module and a faithful right \mathcal{A} -module.

Then L can be expressed as $\delta + h$, where δ is a derivation on \mathcal{U} , and $h : \mathcal{U} \to Z(\mathcal{U})$ is a linear mapping, vanishing at commutators [S, T], where $S, T \in \mathcal{U}$ with $ST = I_{\mathcal{A}} \oplus 0$.

To prove Theorem 3.1, we first show a lemma.

Lemma 3.2. Let $\mathcal{U} = \begin{bmatrix} \mathcal{A} & \mathcal{M} \\ \mathcal{N} & \mathcal{B} \end{bmatrix}$ be a generalized matrix algebra. Suppose that for every $A \in \mathcal{A}$, there exists an integer n such that $nI_{\mathcal{A}} - A$ is invertible in \mathcal{A} . If L is a Lie derivable mapping at $I_{\mathcal{A}} \oplus 0$ from \mathcal{U} into itself, then

$$\begin{split} & L \bigg(\begin{bmatrix} A & M \\ N & B \end{bmatrix} \bigg) \\ & = \begin{bmatrix} a_{11}(A) - MN_0 - M_0N + b_{11}(B) & AM_0 + c_{12}(M) - M_0B \\ & N_0A + d_{21}(N) - BN_0 & a_{22}(A) + N_0M + NM_0 + b_{22}(B) \end{bmatrix}, \end{split}$$

where $M_0 \in M$, $N_0 \in N$, and $a_{11} : \mathcal{A} \to \mathcal{A}$, $b_{22} : \mathcal{B} \to \mathcal{B}$, $a_{22} : \mathcal{A} \to Z(\mathcal{B})$, $b_{11} : \mathcal{B} \to Z(\mathcal{A})$ are all linear mappings satisfying:

$$\begin{aligned} c_{12}(AM) &= Ac_{12}(M) + a_{11}(A)M - Ma_{22}(A), \\ c_{12}(MB) &= c_{12}(M)B + Mb_{22}(B) - b_{11}(B)M, \\ d_{21}(NA) &= d_{21}(N)A + Na_{11}(A) - a_{22}(A)N, \\ d_{21}(BN) &= Bd_{21}(N) + b_{22}(B)N - Nb_{11}(B), \\ a_{11}(MN) &= c_{12}(M)N + Md_{21} + b_{11}(NM), \\ b_{22}(NM) &= Nc_{12}(M) + d_{21}(N)M + a_{22}(MN). \end{aligned}$$

Proof. We prove the lemma by several steps.

Step 1. For any $A_1, A_2 \in \mathcal{A}$ with $A_1A_2 = I_{\mathcal{A}}$ and $B_1, B_2 \in \mathcal{B}$ with $B_1B_2 = 0$, let $S = \begin{bmatrix} A_1 & 0 \\ 0 & B_1 \end{bmatrix}$ and $T = \begin{bmatrix} A_2 & 0 \\ 0 & B_2 \end{bmatrix}$. Then $ST = I_{\mathcal{A}} \oplus 0$

 and

$$\begin{bmatrix} a_{11}([A_1, A_2]) + b_{11}([B_1, B_2]) & a_{12}([A_1, A_2]) + b_{12}([B_1, B_2]) \\ a_{21}([A_1, A_2]) + b_{21}([B_1, B_2]) & a_{22}([A_1, A_2]) + b_{22}([B_1, B_2]) \end{bmatrix}$$

$$= L([S, T]) = [L(S), T] + [S, L(T)]$$

$$= \begin{bmatrix} a_{11}(A_1) + b_{11}(B_1) & a_{12}(A_1) + b_{12}(B_1) \\ a_{21}(A_1) + b_{21}(B_1) & a_{22}(A_1) + b_{22}(B_1) \end{bmatrix} \begin{bmatrix} A_2 & 0 \\ 0 & B_2 \end{bmatrix}$$

$$- \begin{bmatrix} A_2 & 0 \\ 0 & B_2 \end{bmatrix} \begin{bmatrix} a_{11}(A_1) + b_{11}(B_1) & a_{12}(A_1) + b_{12}(B_1) \\ a_{21}(A_1) + b_{21}(B_1) & a_{22}(A_1) + b_{22}(A_1) + b_{22}(B_1) \end{bmatrix}$$

$$+ \begin{bmatrix} A_1 & 0 \\ 0 & B_1 \end{bmatrix} \begin{bmatrix} a_{11}(A_2) + b_{11}(B_2) & a_{12}(A_2) + b_{12}(B_2) \\ a_{21}(A_2) + b_{21}(B_2) & a_{22}(A_2) + b_{22}(B_2) \end{bmatrix}$$

$$-\begin{bmatrix} a_{11}(A_2) + b_{11}(B_2) & a_{12}(A_2) + b_{12}(B_2) \\ a_{21}(A_2) + b_{21}(B_2) & a_{22}(A_2) + b_{22}(B_2) \end{bmatrix} \begin{bmatrix} A_1 & 0 \\ 0 & B_1 \end{bmatrix}.$$

The above matrix equation implies the following four equations:

$$a_{11}([A_1, A_2]) + b_{11}([B_1, B_2])$$

$$= [a_{11}(A_1), A_2] + [b_{11}(B_1), A_2] + [A_1, a_{11}(A_2)] + [A_1, b_{11}(B_2)], \quad (3.1)$$

$$a_{12}([A_1, A_2]) + b_{12}([B_1, B_2])$$

$$= a_{12}(A_1)B_2 + b_{12}(B_1)B_2 - A_2a_{12}(A_1) - A_2b_{12}(B_1)$$

$$+ A_1a_{12}(A_2) + A_1b_{12}(B_2) - a_{12}(A_2)B_1 - b_{12}(B_2)B_1, \quad (3.2)$$

$$a_{21}([A_1, A_2]) + b_{21}([B_1, B_2])$$

$$= a_{21}(A_1)A_2 + b_{21}(B_1)A_2 - B_2a_{21}(A_1) - B_2b_{21}(B_1) + B_1a_{21}(A_2) + B_1b_{21}(B_2) - a_{21}(A_2)A_1 - b_{21}(B_2)A_1,$$
(3.3)

 $a_{22}([A_1, A_2]) + b_{22}([B_1, B_2])$

$$= [a_{22}(A_1), B_2] + [b_{22}(B_1), B_2] + [B_1, a_{22}(A_2)] + [B_1, b_{22}(B_2)]. \quad (3.4)$$

Taking $B_1 = B_2 = 0$ in (3.1)-(3.4), we obtain

$$\begin{aligned} a_{11}([A_1, A_2]) &= [a_{11}(A_1), A_2] + [A_1, a_{11}(A_2)], \\ a_{12}([A_1, A_2]) &= A_1 a_{12}(A_2) - A_2 a_{12}(A_1), \\ a_{21}([A_1, A_2]) &= a_{21}(A_1)A_2 - a_{21}(A_2)A_1, \\ a_{22}([A_1, A_2]) &= 0, \end{aligned}$$

for any $A_1, A_2 \in \mathcal{A}$ with $A_1A_2 = I_{\mathcal{A}}$. Hence, by taking $B_2 = 0$ in (3.1)-(3.4), we have

$$b_{11}(B)A_2 = A_2b_{11}(B)$$
 and $Ba_{22}(A_2) = a_{22}(A_2)B$,
 $A_2b_{12}(B) = -a_{12}(A_2)B$ and $b_{21}(B)A_2 = -Ba_{21}(A_2)$,

for any $B \in \mathcal{B}$. Note that the above equations are true for all invertible elements in \mathcal{A} . Since for every $A \in \mathcal{A}$, there exists an integer n such that $nI_{\mathcal{A}} - A$ is invertible in \mathcal{A} , we have

$$b_{11}(B)A = Ab_{11}(B)$$
 and $Ba_{22}(A) = a_{22}(A)B$, (3.5)

$$Ab_{12}(B) = -a_{12}(A)B$$
 and $b_{21}(B)A = -Ba_{21}(A)$, (3.6)

for any $A \in \mathcal{A}$ and $B \in \mathcal{B}$.

By (3.5), we have $b_{11}(B) \in Z(\mathcal{A})$ for any $B \in \mathcal{B}$ and $a_{22}(A) \in Z(\mathcal{B})$ for any $A \in \mathcal{A}$.

By (3.6), let
$$M_0 = a_{12}(I_A)$$
 and $N_0 = a_{21}(I_A)$, we have

$$a_{12}(A) = AM_0, \ b_{12}(B) = -M_0B, \ a_{21}(A) = N_0A$$

and

$$b_{21}(B) = -BN_0, (3.7)$$

for any $A \in \mathcal{A}$ and $B \in \mathcal{B}$.

Step 2. For any
$$A_1, A_2 \in \mathcal{A}$$
 with $A_1A_2 = I_{\mathcal{A}}$ and $M \in \mathcal{M}$, let

$$S = \begin{bmatrix} A_1 & M \\ 0 & 0 \end{bmatrix} \text{ and } T = \begin{bmatrix} A_2 & 0 \\ 0 & 0 \end{bmatrix}. \text{ Then } ST = I_{\mathcal{A}} \oplus 0 \text{ and}$$

$$\begin{bmatrix} a_{11}([A_1, A_2]) - c_{11}(A_2M) & a_{12}([A_1, A_2]) - c_{12}(A_2M) \\ a_{21}([A_1, A_2]) - c_{21}(A_2M) & -c_{22}(A_2M) \end{bmatrix}$$

$$= L([S, T]) = [L(S), T] + [S, L(T)]$$

$$= \begin{bmatrix} a_{11}(A_1) + c_{11}(M) & a_{12}(A_1) + c_{12}(M) \\ a_{21}(A_1) + c_{21}(M) & a_{22}(A_1) + c_{22}(M) \end{bmatrix} \begin{bmatrix} A_2 & 0 \\ 0 & 0 \end{bmatrix}$$

$$- \begin{bmatrix} A_2 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a_{11}(A_1) + c_{11}(M) & a_{12}(A_1) + c_{12}(M) \\ a_{21}(A_1) + c_{21}(M) & a_{22}(A_1) + c_{22}(M) \end{bmatrix}$$

$$+ \begin{bmatrix} A_1 & M \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a_{11}(A_2) & a_{12}(A_2) \\ a_{21}(A_2) & a_{22}(A_2) \end{bmatrix}$$

$$-\begin{bmatrix} a_{11}(A_2) & a_{12}(A_2) \\ a_{21}(A_2) & a_{22}(A_2) \end{bmatrix} \begin{bmatrix} A_1 & & M \\ 0 & & 0 \end{bmatrix}.$$

The above matrix equation implies the following four equations:

$$c_{11}(A_2M) = [A_2, c_{11}(M)] - Ma_{21}(A_2), \qquad (3.8)$$

$$c_{12}(A_2M) = A_2c_{12}(M) - Ma_{22}(A_2) + a_{11}(A_2)M,$$
(3.9)

$$c_{21}(A_2M) = -c_{21}(M)A_2, (3.10)$$

$$c_{22}(A_2M) = a_{21}(A_2)M, (3.11)$$

for any $M \in \mathcal{M}$. By choosing $A_2 = I_{\mathcal{A}}$ in (3.8), (3.10), and (3.11), we have

$$c_{11}(M) = -MN_0, \ c_{21}(M) = 0, \text{ and } c_{22}(M) = N_0M,$$
 (3.12)

for any $M \in \mathcal{M}$. Note that the Equation (3.9) is true for any invertible element in \mathcal{A} . Since for every $A \in \mathcal{A}$, there exists an integer n such that $nI_{\mathcal{A}} - A$ is invertible, we have that

$$c_{12}(AM) = Ac_{12}(M) - Ma_{22}(A) + a_{11}(A)M, \qquad (3.13)$$

for any $A \in \mathcal{A}$ and $M \in \mathcal{M}$.

Symmetrically, by considering
$$S = \begin{bmatrix} A_1 & 0 \\ 0 & 0 \end{bmatrix}$$
 and $T = \begin{bmatrix} A_2 & 0 \\ N & 0 \end{bmatrix}$

with $A_1A_2 = I_A$, we arrive at

$$d_{11}(N) = -M_0 N, \quad d_{12}(N) = 0, \quad \text{and} \quad d_{22}(N) = NM_0, \quad (3.14)$$

$$d_{21}(NA) = d_{21}(N)A - a_{22}(A)N + Na_{11}(A), \qquad (3.15)$$

for any $A \in \mathcal{A}$ and $N \in \mathcal{N}$.

Step 3. For any
$$M \in \mathcal{M}$$
 and $B \in \mathcal{B}$, let $S = \begin{bmatrix} I_{\mathcal{A}} & -M \\ 0 & 0 \end{bmatrix}$ and $T = \begin{bmatrix} I_{\mathcal{A}} & MB \\ 0 & B \end{bmatrix}$. Then $ST = I_{\mathcal{A}} \oplus 0$ and

$$\begin{bmatrix} * & c_{12}(M) \\ * & * \end{bmatrix} = L([S, T]) = [L(S), T] + [S, L(T)]$$
$$= \begin{bmatrix} * & a_{11}(I_{\mathcal{A}})MB - c_{12}(M)B + c_{12}(M) - MBa_{22}(I_{\mathcal{A}}) \\ + c_{12}(MB) - Ma_{22}(I_{\mathcal{A}}) - Mb_{22}(B) + a_{11}(I_{\mathcal{A}})M + b_{11}(B)M \\ * & * \end{bmatrix},$$

where * denotes the omitted matrix element.

It follows that

$$\begin{split} c_{12}(MB) &= c_{12}(M)B - b_{11}(B)M + Mb_{22}(B) + MBa_{22}(I_{\mathcal{A}}) \\ &- a_{11}(I_{\mathcal{A}})MB + Ma_{22}(I_{\mathcal{A}}) - a_{11}(I_{\mathcal{A}})M, \end{split}$$

for every $B \in \mathcal{B}$ and every $M \in \mathcal{M}$. Taking $A = I_{\mathcal{A}}$ in (3.13) gives $Ma_{22}(I_{\mathcal{A}}) = a_{11}(I_{\mathcal{A}})M$. Hence

$$c_{12}(MB) = c_{12}(M)B - b_{11}(B)M + Mb_{22}(B), \qquad (3.16)$$

for every $B \in \mathcal{B}$ and every $M \in \mathcal{M}$.

Symmetrically, by considering $S = \begin{bmatrix} I_A & 0 \\ BN & B \end{bmatrix}$ and $T = \begin{bmatrix} I_A & 0 \\ -N & 0 \end{bmatrix}$ with $A_1A_2 = I_A$, we arrive at

$$d_{21}(BN) = Bd_{21}(N) + b_{22}(B)N - Nb_{11}(B),$$
(3.17)

for every $B \in \mathcal{A}$ and every $N \in \mathcal{N}$.

Step 4. For any $M \in \mathcal{M}$ and $N \in \mathcal{N}$, let $S = \begin{bmatrix} I_{\mathcal{A}} + MN & -M \\ 0 & 0 \end{bmatrix}$

and $T = \begin{bmatrix} I_{\mathcal{A}} & 0 \\ N & 0 \end{bmatrix}$. Then $ST = I_{\mathcal{A}} \oplus 0$ and

$$-\begin{bmatrix} a_{11}(MN) + MN_0 - M_0N & MNM_0 - c_{12}(M) + M_0NM \\ -M_0NMN - b_{11}(NM) & \\ N_0MN + d_{21}(N + NMN) + NMN_0 & a_{22}(MN) - N_0M + NM_0 \\ & + NMNM_0 - b_{22}(NM) \end{bmatrix}$$

$$= L([S, T]) = [L(S), T] + [S, L(T)]$$

$$= \begin{bmatrix} a_{11}(I_{\mathcal{A}} + MN) + MN_{0} & M_{0} + MNM_{0} - c_{12}(M) \\ N_{0} + N_{0}MN & a_{22}(I_{\mathcal{A}} + MN) - N_{0}M \end{bmatrix} \begin{bmatrix} I_{\mathcal{A}} & 0 \\ N & 0 \end{bmatrix}$$

$$- \begin{bmatrix} I_{\mathcal{A}} & 0 \\ N & 0 \end{bmatrix} \begin{bmatrix} a_{11}(I_{\mathcal{A}} + MN) + MN_{0} & M_{0} + MNM_{0} - c_{12}(M) \\ N_{0} + N_{0}MN & a_{22}(I_{\mathcal{A}} + MN) - N_{0}M \end{bmatrix}$$

$$+ \begin{bmatrix} I_{\mathcal{A}} + MN & -M \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a_{11}(I_{\mathcal{A}}) - M_{0}N & M_{0} \\ N_{0} + d_{21}(N) & a_{22}(I_{\mathcal{A}}) + NM_{0} \end{bmatrix}$$

$$- \begin{bmatrix} a_{11}(I_{\mathcal{A}}) - M_{0}N & M_{0} \\ N_{0} + d_{21}(N) & a_{22}(I_{\mathcal{A}}) + NM_{0} \end{bmatrix} \begin{bmatrix} I_{\mathcal{A}} + MN & -M \\ 0 & 0 \end{bmatrix} .$$

The above matrix relation implies

$$a_{11}(MN) = c_{12}(M)N + Md_{21}(N) + b_{11}(NM) + a_{11}(I_{\mathcal{A}})MN - MNa_{11}(I_{\mathcal{A}}),$$
(3.18)

$$b_{22}(NM) = Nc_{12}(M) + d_{21}(N)M + a_{22}(MN).$$
(3.19)

Taking $A = I_A$ in (3.15) leads to $Na_{11}(I_A) = a_{22}(I_A)N$. So $MNa_{11}(I_A) = Ma_{22}(I_A)N = a_{11}(I_A)MN$ and hence (3.18) can be abbreviated to

$$a_{11}(MN) = c_{12}(M)N + Md_{21}(N) + b_{11}(NM).$$
(3.20)

By (3.5), (3.7), and (3.12)-(3.20), the proof is complete. \Box

Proof of Theorem 3.1. Substitute Lemma 2.2 by Lemma 3.2 in Theorem 2.1, one can show that Theorem 3.1 is true and we leave it to the readers. \Box

Corollary 3.3. Let $\mathcal{U} = Tri(\mathcal{A}, \mathcal{M}, \mathcal{B})$ be a triangular algebra and \mathcal{M} be a faithful left \mathcal{A} -module and a faithful right \mathcal{B} -module. Suppose that for every element $A \in \mathcal{A}$, there exists an integer n such that $nI_{\mathcal{A}} - A$ is invertible in \mathcal{A} . If L is a Lie derivable mapping at $I_{\mathcal{A}} \oplus 0$ from \mathcal{U} into itself, $Z(\mathcal{A}) = \pi_{\mathcal{A}}(Z(\mathcal{U})), Z(\mathcal{B}) = \pi_{\mathcal{B}}(Z(\mathcal{U}))$, then L can be expressed as

 $\delta + h$, where δ is a derivation on \mathcal{U} and $h : \mathcal{U} \to Z(\mathcal{U})$ is a linear mapping, vanishing at commutators [S, T] with $ST = I_A \oplus 0$.

Acknowledgement

This work is supported by NSF of China.

References

- J. Alaminos, M. Mathieu and A. Villena, Symmetric amenability and Lie derivations, Math. Proc. Cambridge Philos. Soc. 137 (2004), 433-439.
- [2] M. Brešar, Characterizing homomorphisms, derivations and multipliers in rings with idempotents, Proc. Roy. Soc. Edinburgh Sect. A 137 (2007), 9-21.
- [3] W. Cheung, Lie derivations of triangular algebra, Linear Multilinear Algebra 51 (2003), 299-310.
- [4] B. Johnson, Symmetric amenability and the nonexistence of Lie and Jordan derivations, Math. Proc. Cambridge Philos. Soc. 120 (1996), 455-473.
- [5] J. Li and Z. Pan, Annihilator-preserving maps, multipliers, and derivations, Linear Algebra Appl. 432 (2010), 5-13.
- [6] F. Lu, Lie derivation of certain CSL algebras, Israel J. Math. 155 (2006), 149-156.
- [7] F. Lu and B. Liu, Lie derivations of reflexive algebras, Integr. Equ. Oper. Theory 64 (2009), 261-271.
- [8] F. Lu and W. Jing, Characterizations of Lie derivation of B(X), Linear Algebra Appl. 432 (2010), 89-99.
- [9] M. Mathieu and A. Villena, The structure of Lie derivations on C^{*}-algebras, J. Funct. Anal. 202 (2003), 504-525.
- [10] C. Miers, Lie derivations of von Neumann algebras, Duke Math. J. 40 (1973), 403-409.
- [11] A. Sands, Radicals and Morita contexts, J. Algebra 24 (1973), 335-345.
- [12] L. Zhang, J. Zhu and J. Wu, All-derivable points in nest algebras, Linear Algebra Appl. 433 (2010), 91-100.