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Abstract
We say that L is a Lie derivable mapping at G from an algebra A into itself, if
L([A, B]) = [L(A), B]+[A, L(B)] for any A, Be A with AB=G. Let

U = [;\4/ /Z:} be a generalized matrix algebra. In this paper, we prove that if

L is a Lie derivable mapping at 0 (resp., I4 ® 0) from U/ into itself, then L can

be expressed as the sum of a derivation of U/ and a linear mapping with image in

the center vanishing at commutators [S, T], where S, T e U with ST =0
(resp., ST =14 ®0).

1. Introduction

Let R be a unital ring and A be a unital R -algebra. A linear
mapping § from A into itself is called a derivation, if 8(xy) = d(x)y +

x8(y) for any x, y € A. A linear mapping L from A into itself is called a
Lie derivation, if L([x, y]) = [L(x), y] + [x, L(y)] for any x, y € A, where
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[x, ] = xy — yx is the usual Lie product. The questions of characterizing

Lie derivations and revealing the relationship between Lie derivations

and derivations have attracted some authors' attention. In [9], Mathieu

and Villena proved that every linear Lie derivation on a C*-algebra can
be decomposed into the sum of a derivation and a center-valued trace. For

other results, see [1, 3, 4, 6, 7, 10] and the references therein.

Recently, there have been a number of papers on the study of
conditions under which derivations on algebras can be completely
determined by their action on some subsets of elements (for example, see
[2, 5, 12] and the references therein). We say that L is a Lie derivable
mapping at G from A into itself, if L([A, B]) = [L(A), B] + [A, L(B)] for
any A, Be A with AB = G. In [8], Lu and Jing first studied the local

actions of Lie derivations and showed that if L is a Lie derivable mapping

at 0 (resp., a fixed nontrivial idempotent P) from B(X) into itself, then L
can be expressed as the sum of a derivation of B(X) and a linear

mapping with image in the center vanishing at commutators [A, B],

where A, B € B(X) with AB = 0 (resp., AB = P).

Let R be a unital ring. A Morita context is a set (A, B, M, N') and
two mappings ¢ and ¢, where A and B are two R -algebras, M is an
(A, B)-bimodule, and N is a (B, A)-bimodule. The mappings ¢ : M ®p
N —>A and ¢: N®y M —> B are two bimodule homomorphisms
satisfying the following associativity: ¢(M ® N)M' = Mo(N ® M') and
o(N ® M)N' = No(M ® N'), for all M, M' € M and N, N' € N. These
conditions insure that the set

L(t/ /l\:}:{{;l] JZ}|AEA,MEM,NEN,BEB},

form an R -algebra under usual matrix operations. We call such an
A M}

R -algebra a generalized matrix algebra and denoted by U = { N B
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where A and B are two unital algebras and at least one of the two
bimodules M and N is distinct from zero. This kind of algebra was first

introduced by Sands in [11]. Obviously, when M =0 or N =0, U

degenerates to the triangular algebra. We denote I, the unit element in

A 0
A, I the unit element in B, and A @ B the element {0 B} in U.

The purpose of this paper is to consider the local actions of Lie derivations
of generalized matrix algebras. We prove that if L is a Lie derivable

mapping at 0 (resp., I 4 ® 0) from U into itself, then L can be expressed

as the sum of a derivation of &/ and a linear mapping with image in the

center vanishing at commutators [S,T], where S,T el with

ST = O(resp., ST = I, ®0).

In this paper, the center of an algebra A is denoted by Z(A). Given

A M

, we define two natural
N B

a generalized matrix algebra U = {

projections n4 : Y > A and ng : U > B by

ol en e s 3]s

Given an integer n > 2, we say that the characteristic of an algebra
A is not n, if for every A € A, nA = 0 implies A = 0. In this paper, we

always assume that the characteristic of ¢/ is not 2.
2. Lie Derivable Mapping at Zero-Product Elements

We call a left (resp., right) A -module M is faithful, if for any A € A
and M € M, AM = 0 (resp., MA = 0) implies A = 0. In this section, we
study the Lie derivable mapping at zero-product elements. Our main
result is the following:
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A
N

and L be a Lie derivable mapping at 0 from U into itself. Suppose that
Z(A) = n4(Z(U)), Z(B) = ng(Z(U)), and one of the following conditions
holds:

Theorem 2.1. Let U = [ } be a generalized matrix algebra

(1) M is a faithful left A -module and a faithful right B -module;

(2) M is a faithful left A-module and N is a faithful left B -module;
(8) N is a faithful right A -module and M is a faithful right B -module;
(4) N is a faithful right A -module and a faithful left B -module.

Then L can be expressed as & + h, where & is a derivation on U, and
h:U — Z(U) is a linear mapping, vanishing at commutators [S, T,

where S, T € U with ST = 0.

Since L is linear, for any A e A, M e M, N e N, and B € B, we

may write

(v %)

_ |:all(A)+bll(B)+cll(M)+d11(N) alz(A)+b12(B)+C12(M)+d12(N)}
ag1(A) + by (B) + cg1 (M) + dg1(N)  agg(A) + bgg(B) + coo (M) + dgg(N) ]’

where a;;, b;j, ¢;;, and d;; are linear mappings, i, j € {1, 2}.

To prove Theorem 2.1, we first show a lemma and two propositions.

A
N

and L be a Lie derivable mapping at 0 from U into itself. Then

{5

_[a11(A) = MNo — MoN + by1(B) AM + ¢15(M) - MoB
N0A+d21(N)—BNO GQZ(A)+NOM+NMO +b22(B) ’

Lemma 2.2. Let U = { } be a generalized matrix algebra
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where My € M, Ny € N, and a1 : A —> A, by : B> B, agy : A - Z(B),
by, : B — Z(A) are all linear mappings satisfying

c19(AM) = Acio(M) + a11(A)M — Magyy(A),
¢12(MB) = ¢19(M)B + Mbyy(B) — by1(B)M,
dg1(NA) = dg1(N)A + Naj;(A) — agy(A)N,
d91(BN) = Bdg1(N) + byg(B)N — Nb1(B),
a11(MN) = ¢19(M)N + Mdy;(N) + by (NM),
bog(NM) = Neijo(M) + dg1(N)M + age(MN).

Proof. We prove the lemma by two steps:

A
Step 1. For any A € A, My, My € M, B € B, let S={O
0 M
and T = 2! Then TS = 0 and
0 B

c].l(AM2 + M]_B) C12(AM2 + MlB)
CZI(AMZ + MlB) C22(AM2 + MlB)

= L([S, T]) = [L(S), T] + [S, L(T)]

_ [011(A)+011(M1) 012(A)+C12(M1)M0 Mﬂ
ag1(A) +co1(My) aga(A)+cog(My)][0 B

0 Mzﬂan(A)ﬂ“cn(Ml) a12(A) + c19(My)]
0 B Jlagi(A)+co1(Mq) age(A)+ cog(My)]

(A MlMCn(Mz)ern(B) c12(My) + byg(B) ]
0 0 Jlco1(Mg)+ b9y (B) cog(My)+ bgg(B),

[c11(My) + by1(B) 012(M2)+b12(B)MA M,
Lco1(Mg) + bg1(B) cag(Mg) + bgg(B)]| 0 0
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The above matrix equation implies the following four equations:
c11(AMg + M1 B) = Acy(M3) + Aby(B) + Myco1(Mg) + M1by1(B)
— Msagi(A) - Macgy (M) — c11(Mg)A - by1(B)A,
2.1)
c19(AMy + M1B) = ay1(A)Mg + 11 (M1 )My + ay2(A)B + c19(M1 )B
+ Acip(My ) + Abyg(B) + Mycoa(Mg) + Mboz(B)
— Myagg(A) - Macga(My ) — c11(Mg )My - by1(B)M;,
(2.2)
co1(AMy + MyB) = - Bag; (A) — Beg1 (M) - cg1(M3)A - by1(B)A,  (2.3)
co2(AMy + M1B) = ag (A)My + c21(My )My + ag(A)B + coe(M1)B

— Bagy(A) - Begg(My ) — co1 (Mg )My — byy (B)M.

(2.4)
Taking My = Mg = 0 in (2.1)-(2.4), we have
[A, b11(B)] = 0, [aga(A), B]=0, (2.5)
a12(A)B = — Aby5(B), (2.6)
Bag(A) = - bg1(B)A, 2.7)
for every A € A and every B € B. By (2.5), we have
b11(B) e Z(A) and ag9(A) € Z(B), (2.8)

for every A € A and every B € B. Taking A = I 4 and B = Ig in (2.6),
we have aj9(I4) = —b1a(Ig). Let My = a;3(I ). Then taking A = I 4

and B = Iz in (2.6), respectively, we obtain

a12(A) = AMO and blZ(B) = - MoB, (29)
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for every A € A and every B e B. Similarly, let ag(I4) = Ny, by (2.7),

we obtain

a21(A) = NoA and b21(B) = —BN(), (210)
for every A € A and every B e B.

Taking B = 0 and M; = 0 in (2.2)-(2.4), we have

c12(AM) = Acyg(M) + a11(A)M — Magy(A), (2.11)
Cgl(AM) = —021(M)A, (2.12)
CQQ(AM) = a21(A)M, (213)

for every A e A and every M e M. Since char(U) # 2, by taking
A =1, in (2.12) and (2.13), we obtain

o (M) =0 and cgy(M)= NoM, (2.14)

for every M e M. Similarly, by (2.1) and (2.2), we obtain
c12(MB) = ¢12(M)B + Mbyy(B) - by (B)M, (2.15)
ey (M) = - MN,, (2.16)

for every B € B and every M € M.

0 0 A
Symmetrically, by considering S = { B} and 1= [ O} h
1

N N2 0
arrive at
di1(N) = -MyN, di3(N)=0, dyg(N)= NM,, (2.17)
dg1(NA) = dg1(N)A + Naj;(A) — agg(A)N, (2.18)
d91(BN) = Bdg{(N) + bgg(B)N — Nby1(B), (2.19)

for every A € A, every B € B, and every N € N.
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MN -M
Step 2. For any M € M andNeN,letSz[ }and

0 0

T = [IA O] Then ST = 0 and
N 0

ayy (MN)+ MNy — MoNMN — by, (NM) MNMy — ¢ (M)+ MyNM
NoMN+ dZI(NMN)+ NMNO a22(MN)— NoM + NMNMO —b22(NM)

= L([S, T]) = [L(S), T]+ S, L(T)]

a1 (MN) + MN, MNM — c19(M)|[14 0
B NoMN ag9(MN) - NoM || N 0

I,  O0la;1(MN)+ MNy,  MNM, — c;5(M)
N 0 N()MN (0253} (MN) - N()M

+ MN -M all(IA)—MoN MO
0 0 No + dg1(N) aga(L4)+ NMj

B au(IA)—MON MO MN -M
Ny + dg1(N) age(L4)+ NMo ][ O 0]

The above matrix equation implies
a11(MN) = ¢19(M)N + Mdy (N) + by (NM)
+ay1(I 4 )MN — MNay1(1 ), (2.20)
boo(NM) = Neyo (M) + doy (N)M + age(MN). (2.21)

By (2.11) and (2.18), ¢;9(AM) = Acj9(M) + a1, (A)M — Mayy(A) and
do1(NA) = dg1(N)A + Naj1(A) — age(A)N. Taking A =1, leads to
a11({4)M = Masy(1,) and Nayy(Iy) = age(14)N. So MNayi(Iy) =
Mags(I 4 )N = a11(I4)MN and hence (2.20) can be abbreviated to

a11(MN) = ¢19(M)N + Mdy;(N) + b1 (NM). (2.22)

By (2.8)-(2.11), (2.14)-(2.19), (2.21), and (2.22), the proof is complete.

O
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A
N

proposition below, and since the proof is analogous to that of

The center Z(U) of U = { /\[j} is of the form given in the

[3, Proposition 3], we omit it.

A M.
Proposition 2.3. The center of U = [ } is

N B
ZU)={A®B: Ac Z(A), B e Z(B), AM = MB,
NA = BN, VM € M, VN e N'}.

Furthermore, if one of the following conditions holds:

(1) M is a faithful left A -module and a faithful right B- module;
(2) M is a faithful left A-module and N is a faithful left B- module;

B) M is a faithful right B-module and N is a faithful right
A-module;

(4) N is a faithful left B- module and a faithful right A- module.

Then there exists a unique isomorphism t from ng(Z(U)) to = 4(Z(U))
such that T(B)M = MB and Nt(B) = BN for any B e B, M € M, and
N e N.

The proof of the proposition below concerning the structure of

derivations on U is standard and we omait it.

. . A M] .
Proposition 2.4. A linear mapping & on U :{ } s a

N B
derivation, if and only if it is of the form
5 A M B an(A)—MNO —M()N AMO —M0B+012(M)
N B B NoA—BNO+d21(N) b22(B)+NOM+NMO ’
where No e N, My e M, and ay;: A —> A, bgg : B> B, cig: M —> M,

do1 : N = N are linear mappings satisfying
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(1) a17 is a derivation on A, ¢;3(AM) = a;;(A)M + Ac;5(M) and
dg1(NA) = Nay(A) + dg; (N)A;

(2) byg is a derivation on B, c¢i9(MB) = Mbyy(B) + ¢;9(M)B and
do1(BN) = baz(B)N + Bdg1(N);

() a1 (MN) = 15 (MN + Melgy(N) and byy(NM) = doy (N)M +
NCI2 (M)
Now, we are in a position to prove our main theorem.

Proof of Theorem 2.1. From Lemma 2.2, it follows that for any
Ac A MeM, NeN,and B € B :

(v %)

_[a11(A)= MNy - MoN +b;1(B) AM +c19(M)-MB
N0A+d21(N)—BNO GQQ(A)-F NOM+NMO +b22(B) ’

where My € M and Ny € N.

We assume that (1) holds. The proofs for the other cases are

analogous.

By Lemma 2.2, ag9(A) € Z(B) = ng(Z(U)), since M is both a faithful

left A-module and a faithful right B -module, by Proposition 2.3, there
exists a unique isomorphism 7 : ng(Z(U)) > n4(Z(U)) such that

m(agg(A))M = Magy(A) and  Nr(age(A)) = age(A)N.
Similarly, since b;1(B) € Z(A) = n4(Z(U)), we have
7 (b1 (B))N = Nbyy(B)  and by (B)M = Mr ™' (by1(B)).

Let I, = To a9y and Iz = 71 o by;. We have 1(A)M = Magy(A),
NI, (A) = ags(A)N, Iz(B)N = Nby;(B), and by;(B)M = Mig(B). Let

aly = a;; 14 and bhy = bgy — Ig. Then
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L[{A MD _ [ail(A) ~MNy - MgN  AMg + cyo(M) - MOB},

N B N0A+d21(N)—BNO NOM+NMO +bé2(B)
N FA(A) +by1(B) 0 }
0 agz(A) + I5(B)

5([,4 MD _ [ail(A) —MNy - MgN  AMg + c5(M) - MOB}’

N B NoA +dy (N)- BNy,  NoM + NMy + byy(B)
and
A M B 14(A)+b1(B) 0
th BD‘{ 0 @AM+%wJ

We claim that § is a derivation on U and h : U — Z(U) is a linear

map, vanishing at commutators [S, T'] with ST = 0.
Claim 1. By Lemma 2.1, forany A € A and M e M,
c12(AM) = Acip(M) + a11(A)M — Magz(A)
= Acip(M) + a1 (A)M - 14(A)M
= Ay (M) + afy (A,
dg1(NA) = d1(N)A + Najy (A) - age (AN
= dg1(N)A + Nay;(A) - Niy(A)
= d91(N)A + Naj;(A).
So for any A;, Ay € A and M e M,
c12(A1AgM ) = AjAgerp (M) + aqy (A1 Ag )M,
c12(A1AgM) = a1 (A; )AgM + Ajc1p(AgM)

= a11(A;)AgM + Ay Agci9(M) + Ajaii(Ag )M
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So (aj1(A149) - aj1(A;)Ay — Ajaj1(Ag))M = 0. Since M is a faithful
left A -module, we have aj; is a derivation. Similarly, one can show that
c12(MB) = c12(M)B + Mbjy(B), d21(BN) = byo(B)N + Bdg(N), and bjy
is a derivation.

Since MN € A and NM e B, we have
c19(MNM) = MNejo(M) + ayy (MN)M — Magy(MN)
= MNeyo(M) + cyo(M)NM + Mdyy (N)M
+b11(NM)M - Magy(MN),
c12(MNM) = c19(M)NM + Mboy(NM) - by (NM)M
= ¢19(M)NM + MNe,o(M) + Mdyy(N)M
+ Magy(MN) - by (NM)M.

So Mago(MN) = b;;(NM)M. On the other hand, Magy(MN) =14
(MN)M. Hence b;;(NM)=14(MN) and aj;(MN) = c;o(M)N + Mdy,
(N). Similarly, one can show that byo(NM) = Necjo(M) + doy (N)M. By

Proposition 2.4, § 1is a derivation.

Claim 2. It is easy to show that A is a linear mapping with its image
in Z(U). Then for S, T € U with ST = 0, we have

8([S, T1) + A([S, T]) = L([S, T]) = [L(S), T+ [S, L(T)]
= [8(S), T]+[S, 8(T)] + [A(S), T] +[S, W(T)]
= [8(S), T1+ IS, &(T)].
Hence A([S, T]) = 0. This concludes the proof. m

Obviously, when N =0, U/ degenerates to an upper triangular

algebra. Thus, we have the following corollary:
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Corollary 2.5. Let U = Tri(A, M, B) be a triangular algebra, where
M be a faithful left A-module and a faithful right B -module. If L is a
Lie derivable mapping at 0 from U into itself and Z(A) = n4(Z(U)),
Z(B) = ng(Z(U)), then L can be expressed as &+ h, where § is a
derivation on U and h: U — Z(U) is a linear mapping, vanishing at

commutators [S, T| with ST = 0.
3. Lie Derivable Mapping at [ 4 © 0-Product Elements

In this section, we study the Lie derivable mapping at I4 @ O0-

product elements.

A
N

Suppose that for every A e A, there exists an integer n such that

Theorem 3.1. Let U = { } be a generalized matrix algebra.

nl 4 — A is invertible in A. If L is a Lie derivable mapping at 1,4 ® 0
from U into itself, Z(A) = n(Z(U)), Z(B) = ng(Z(U)), and one of the
following conditions holds:

(1) M is a faithful left A-module and a faithful right B- module;

(2) M is a faithful left A-module and N is a faithful left B- module;

B) M is a faithful right B-module and N is a faithful right
A-module;

(4) N is a faithful left B- module and a faithful right A- module.

Then L can be expressed as & + h, where 8 is a derivation on U, and
h:U — Z(U) is a linear mapping, vanishing at commutators [S, T,
where S, T € U with ST =1, ®0.

To prove Theorem 3.1, we first show a lemma.

A
N

Suppose that for every A e A, there exists an integer n such that

Lemma 3.2. Let U = { } be a generalized matrix algebra.

nl 4 — A is invertible in A. If L is a Lie derivable mapping at 1,4 ® 0
from U into itself, then
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(v )

_ all(A)—MNO —MON+b11(B) AMO +C12(M)—M0.B
B NyA + dyy(N) - BN, ag9(A)+ NgM + NM, + byy(B)|

where My € M, Ny € N, and a1 : A —> A, by : B> B, agy : A > Z(B),
by : B— Z(A) are all linear mappings satisfying:

c12(AM) = Acyo(M) + ay1(A)M — Magy(4),
c12(MB) = c12(M)B + Mbyy(B) - by (B)M,
do1(NA) = dg1(N)A + Nag(A) - agz (A)N,
dg1(BN) = Bdy1(N) + by (B)N — Nby1(B),
a11(MN) = c19(M)N + Mdyy + b1 (NM),
boa(NM) = Neyo(M) + dgy (N)M + agy (MN).
Proof. We prove the lemma by several steps.
Step 1. For any Ay, Ay € A with AjAy = I, and B;, By € B with
BBy =0, let S = ﬁ)l gj and T = ﬁf ;ﬂ. Then ST =1, ®0

and

|:a11([A17 Ag])+ b1 ([Br, Bal) a1a([A1, Ag]) + bia([ By, 32])}
ag1([A1, Ag]) + b9y ([By, Bg]) age([Ar, Ag]) + baa([By, B ])

= L([S, T]) = [L(S), T]+[S, L(T]

a11(A1) +b11(By) aja(A;)+ b12(B1)HA2 0 }
0 B

- Lzl(Al)Jf bo1(By) age(Ay)+ beg(By)

_[A2 0}[011(A1)+511(31) 012(A1)+512(31)}
0 By [lag1 (A1) + bo1(Br) aga(Ap)+ boa(By)

+{A1 OMG11(A2)+511(B2) a12(A2)+b12(B2)}
0 By |[ag1(Ag) + bg1(By) age(Ag) + byg(By)
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_[011(A2)+b11(32) 012(A2)+b12(32)}[441 0}
ag1(Ag) +bo1(By) agg(Ag)+boa(By)][ 0 B |

The above matrix equation implies the following four equations:
ar1([Ar, Ag]) + by1([By, By])
= [a11(A1), Ag]+[b11(By), Ag]+[A1, a11(Ag)]+[Ay, b1y (By)],
arz([Ar, Ag]) + by2([By, By])
= a19(A; )By + bo(B, )By — Agaya(A;) — Agbyo(By)
+ Ajayp(Ag) + Abig(By) — ayo(Ag By — ba(Bsy)By,
as1([Ar, Ag]) + bo1 ([By, By])
= g1 (A1 )Ag + by (B )Ag — Boagy (A ) — Bobgy (B, )
+ Bjag;(Ag) + Bibgy(Bs) — agy(Ag )A; — by1(Bs)A;,
ags([A1, Ag]) + baa([By, Bs])
= [aga(A1), By ]+ [bo2(By), Byl +[Br, aga(Az)] + [By, bya(By)]-
Taking B; = By = 0 in (3.1)-(3.4), we obtain
ar1([Ar, Az]) = [a11(Ar), Ag]+[Ar, a11(Ag)],
a12([A1, Ay]) = Ajaga(Ag) — Agara(4y),
ag1([Ay, Ag]) = ag1(A;)Ag — agy(Ag)A;,

ag([41, Ag]) =0,

35

(3.1)

(3.2)

(3.3)

(3.4)

for any A;, Ay € A with A;Ay = I1,. Hence, by taking By =0 in

(3.1)-(3.4), we have
bi1(B)Ay = Agb1(B) and  Bagy(Ay) = aga(Ag)B,

Agbi9(B) = —a19(Ag)B  and  byy(B)Ag = — Bagy(Ag),
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for any B e B. Note that the above equations are true for all invertible
elements in A. Since for every A e A, there exists an integer n such

that nl 4 — A is invertible in A, we have
bi1(B)A = Abj1(B) and  Bagy(A) = age(A)B, (3.5)
Aby3(B) = —a19(A)B  and  by1(B)A = - Bay(A), (3.6)
forany A € A and B € B.

By (3.5), we have b;;(B) € Z(A) for any B € B and agy(A) € Z(B)
for any A e A.

By (3.6), let My = a13(I4) and Ng = ag91(I4), we have
a12(A) = AMy, by3(B) = - MoB, as(A) = NoA

and

bo1(B) = — BNy, (8.7
forany A € A and B e B.

Step 2. For any A;, Ay € A with A4y =1, and M e M, let

S = [Al M} andT:{Az O}. Then ST =1, ©0 and
0 0 0 0

[011([141, Ag]) = c11(AgM) a12([4;, Ag]) - 012(A2M)}
ag1([A1, Ag]) — co1(AgM) — cg9(AgM)
= L([S, T]) = [L(S), T]+[S, L(T)]

:[011(A1)+C11(M) 012(A1)+012(M)MA2 0}
ag1(Ar) +co1(M) agg(Ay)+coa(M)|[ O 0

_|:A2 OMGH(Al)ﬁLCn(M) a12(A1)+012(M)}
0 0lagi (A1) +ca1 (M) aga(Ay)+ coo(M)

o Sl e
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s rsdend]

The above matrix equation implies the following four equations:

c11(AgM) = [Ay, ¢;1(M)] - Mag;(As), (3.8)
c12(AgM) = Agci9(M) — Magg(Ay) + a11(Ag )M, (3.9)
c91(AgM) = —c91 (M)A, (3.10)
Co9(AsM) = a1 (Ag )M, (3.11)

for any M € M. By choosing Ay = I, in (3.8), (3.10), and (3.11), we

have
Cll(M) = —MN(), CQl(M) = O, and C22(M) = N()M, (312)

for any M e M. Note that the Equation (3.9) is true for any invertible
element in A. Since for every A € A, there exists an integer n such that

nl 4 — A isinvertible, we have that
c12(AM) = Acip(M) - Magy(A) + a11(A)M, (3.13)

forany A € A and M € M.

. . A 0 Ay 0
S trically, b d S = d T =
ymmetrically, by considering { 0 0} an {N 0}
with AjAy; = I 4, we arrive at
dll(N) = —M()N, dlZ(N) = O, and d22(N) = NM(), (314)
do1(NA) = dg1(N)A - age (AN + Nagyi(A), (3.15)

forany A e A and N € V.

I -M
Step 3. For any M ¢ M and B e B, letS:{é4 0}and

Tz[I(“)“ ]‘fﬂ. Then ST =1, ®0 and
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[* C12iM)} = L([S, T]) = [L(S), T]+[S, L(T)]

* a11(1 4 JMB — c19(M)B + c19(M) — MBags (I 4)
= + ¢19(MB) — Magg (I 4 ) — Mbgg(B) + ay1(I14 )M + b1 (B)M |,
* *

where * denotes the omitted matrix element.
It follows that
c12(MB) = c12(M)B - by1(B)M + Mbyy(B) + MBagy(14)
—ay1(14)MB + Magy(14) - ay1(14)M,

for every B e B and every M € M. Taking A =1, in (3.13) gives
Mags(I ) = ay1(14)M. Hence

¢12(MB) = ¢19(M)B — by1(B)M + Mbyy(B), (3.16)

for every B € B and every M € M.

1 0 1 0
Symmetrically, by considering S = A and T =| A
BN B
with AjAy = I 4, we arrive at

d91(BN) = Bdy;(N) + by (B)N — Nby1(B), (3.17)

for every B € A and every N € N.

I MN -M
Step4.ForanyMeMandNeN,letS:[A+O 0}
I, 0
and T = . Then ST =1, ®0 and
N 0
an(MN)+ MNO —MoN MNMO —C12(M)+ MoNM

— MyNMN - by, (NM)
NoMN+d21(N+NMN)+NMNO (122(MN)—NOM+NMO
+ NMNMO - sz(NM)
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= L([S, T]) = [L(S), T]+[S, L(T)]

_ all(IA + MN)+ MNO MO + MNMO — ch(M) I.A 0
N0+NOMN 022(1A+MN)—NOM N 0

_IA 0 all(IA+MN)+MN0 M0+MNMO—6‘12(M)

_N 0 N0+NOMN a22(IA +MN)—NOM
+_I.A + MN —M:| all(IA)—MoN MO

L O 0 Nj +dg1(N) aga(I4)+ NMy

_an(IA)—MON MO |:IA + MN —M:|

| No +d21(N) agg(l4)+ NMy 0 0 |

The above matrix relation implies
a11(MN) = ¢19(M)N + Mdy (N) + by (NM)
+ay1(I 4 )MN — MNay1(1 ), (3.18)
bog(NM) = Neyo(M) + dg1(N)M + age(MN). (3.19)

Taking A = I 4 in (3.15) leads to Naj1(I4) = age(I4)N. So MNay;
(I4)= Mass(I4)N = ay1(I4)MN and hence (3.18) can be abbreviated
to

a11(MN) = ¢19(M)N + Mdy;(N) + b1 (NM). (3.20)

By (3.5), (3.7), and (3.12)-(3.20), the proof is complete. O

Proof of Theorem 3.1. Substitute Lemma 2.2 by Lemma 3.2 in
Theorem 2.1, one can show that Theorem 3.1 is true and we leave it to the
readers. O

Corollary 3.3. Let U = Tri(A, M, B) be a triangular algebra and M
be a faithful left A-module and a faithful right B -module. Suppose that

for every element A € A, there exists an integer n such that nl 4 — A is
invertible in A. If L is a Lie derivable mapping at 1,4 © 0 from U into
itself, Z(A)=n4(Z(U)), Z(B) = ng(Z(U)), then L can be expressed as
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8+ h, where § is a derivation on U and h:U — Z(U) is a linear

mapping, vanishing at commutators [S, T| with ST = I 4 @ 0.
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